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The advent of AI and ML in healthcare has led to a complete metamorphosis in how we diagnose, 
treat, and manage CVDs. To illustrate how AI/ML might influence patient benefit and clinical workflow 
optimization, this review explores the most recent developments and the recent clinical implementations 
on treating CVD. AI and ML technology assist in risk evaluation, early diagnosis, and personalized cure 
protocols by employing adept algorithms and data analytics. These include predictive models that can 
analyze vast amounts of clinical data for patterns and predictive cues that are not readily apparent to 
human practitioners. These systems further optimize treatment plans and decrease diagnostic error rates. 
Despite these promising findings, there are still many hurdles before AI/ML can hit clinical primetime. 
Specific limits mainly concern data privacy, the need for extensive validation studies, and the demand 
for interdisciplinary work. Beyond heralding the transformative power of AI and ML in cardiovascular 
medicine, this study calls for a comprehensive approach that considers the legal, ethical, and logistical 
barriers to tipping the balance in favor of implementing these technologies to enhance patient care. Because 
cardiovascular diseases (CVDs) continue to be a major cause of death globally, new strategies for better 
diagnosis, care, and treatment are required. Both machine learning (ML) and artificial intelligence (AI) have 
become potent instruments for improving clinical decision-making, tailoring treatment, and forecasting 
the course of diseases. The application of AI and ML in CVDs is examined in this study, with particular 
attention paid to real-time monitoring via wearable technology, risk stratification using predictive models, 
and early identification with sophisticated imaging. ML-based drug discovery speeds up the identification 
of new therapeutic targets, while AI-driven algorithms allow for increased accuracy in the diagnosis 
of arrhythmias, heart failure, and myocardial infarction. Problems are also covered, such as algorithm 
openness and data privacy. The use of AI and ML has enormous potential to transform cardiovascular 
treatment and enhance patient outcomes.

A B S T R A C TA R T I C L E  I N F O

eISSN- 3048-8842

Introduction 
Cardiovascular diseases are known to be a leading cause of 
death in the global perspective. Around 17.9 million deaths 
worldwide were attributed to CVDs in 2015. Stroke and 
ischemic heart disease (IHD) were the two primary causes 
of CVD-related health loss worldwide (Abouelmehdi et al., 

2018). CVDs will be responsible for around 22.2 million 
deaths per year by 2030. Currently, less and middle-
income countries account for 75% of fatalities from CVD, 
which has a 7% impact on GDP (Attia et al., 2021). Fast 
food and sedentary lifestyles have replaced farming and 
active lifestyles due to the significant shift in worldwide 
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population trends over the past few decades. It has been 
established that a lifestyle that consumes more tobacco 
reduces the risk factors associated with cardiovascular 
disorders.
India would lose $237 billion over ten years (2005–2015) 
in lost productivity and higher healthcare expenditures 
as a result of the current burden of CVD, according to 
projections from the World Health Organization (WHO). 
The high rate of CVD development, high premature 
mortality, and high case fatality are explained by biological 
mechanisms, socioeconomic factors, and their interaction. 
To address this considerable load, it is vital to comprehend 
the complex processes that underlie the interplay of 
biological and societal causes (Cheatham & Young, 2000).
It is a group of disorders that impacts the hearts and 
vessels related to it. These are a collection of several 
diseases, most of which have atherosclerosis as their main 
cause. Chronic diseases are those that take a long time 
to manifest symptoms and grow gradually throughout a 
person’s life (Cheung et al., 2000). In Europe, CVDs account 
for 45% of all deaths, making them very significant for 
public health. The main causes of CVDs are atherosclerosis, 
coronary artery disease (CAD), and arterial hypertension.
Around the world, atherosclerosis is the leading cause of 
fatalities from heart disease. It is a maturing condition 
that causes the artery wall to thicken and harden. It has 
a huge negative impact on the cardiovascular system 
and is linked to several ailments. The primary cause of 
atherosclerosis is high plasma cholesterol (>150 mg/dL). 
The prevalent cardiac condition known as coronary artery 
disease (CAD) is characterized by constriction or blockage 
of the coronary arteries, the primary blood channels (Cho 
et al., 2022). The main cause of CAD is plaque, which is 
described as a fatty material that forms inside the intima 
and is linked to significant inflammation, particularly if the 
inflammation is continuous. Plaque formation takes place 
in the vessel wall’s intima. This makes it more difficult for 
the cardiomyocytes to receive enough blood, oxygen, and 
nutrients. This will cause the breakup of atherosclerotic 
plaque, leading to thrombosis and vascular closure, 
ultimately resulting in heart attack, stroke, limb ischemia, 
or even death. The illness’s other causes include low-
grade inflammation, lipid accumulation, and a damaged 
endothelium (Elias et al., 2022).
AH is among the most common CVDs. AH is a substantial 
risk factor for peripheral vascular disease, heart failure, 
myocardial infarction, and stroke even if it rarely or 
never shows symptoms. The most crucial requirements 
include that a person is diagnosed with an acute heart 
attack (AH) if their repeated assessment yields a diastolic 
blood pressure (DBP) of 90 mm Hg and/or a systolic 
blood pressure (SBP) of 140 mm Hg in the clinic or office. 
CVDs have a variety of causes. While certain factors—
such as age, gender, and genetic makeup—never change, 
others—such as obesity, dyslipidemia, high blood pressure, 

smoking, physical inactivity, and bad eating habits—may 
be reduced or eliminated (Global Atlas on Cardiovascular 
Disease Prevention and Control, 2011).

Challenges in Treating Cardiovascular Disorders 
The objective is to decrease the number of animals utilized 
in preclinical research studies, improve translation, and 
facilitate drug discovery by creating a multifunctional 
platform that combines CADD, constantly developing 
engineering technologies (such as micro/nanofabrication), 
and knowledge of the etiology and pathophysiology of CVD. 
For instance, creating innovative, extremely potent CVD 
medication options while closely observing toxicity and 
pharmacokinetics (PK) would be the ultimate objective. 
Despite the many useful uses of CADD in the development 
of contemporary medications, these platforms have 
several limitations. In particular, several lead molecule 
recantations with CADD have not shown the intended 
activities in diverse physiological systems, and results 
in theoretical computer-assisted systems need to be 
validated in natural systems (Helvaci et al., 2019). 
For a chemical to be approved as a definitive lead or 
treatment, it must meet several prerequisites and certain 
pharmacological requirements. Only 40% of medication 
or lead compounds are approved for use in humans 
after completing many phases of clinical studies. To get 
around limitations and increase efficacy, it is essential to 
address the continuous improvements of techniques and 
algorithms while researching strong lead compounds. To 
create and maintain high-quality experimental substances, 
the database’s dependability must be increased (Johnson 
et al., 2018). Because there aren’t enough high-quality 
data sets, many pharmacophoric groupings can’t pass the 
physiological activity test. 
However, there are still chances for improvement and 
optimization. One unmet need is the ability to conduct 
high-throughput screening for toxicity assessment in drug 
testing, which would allow for the rapid and cost-effective 
evaluation of a large number of compounds. The FDA has 
approved a wide range of drugs in the US, including TKI-
related compounds for cancer treatment, which were 
created using high-throughput screening techniques. 
Developing a high-throughput drug screening platform 
that accurately mimics the physiological function of the 
native cardiac system and produces reliable, consistent 
results is challenging due to technical limitations and the 
maturation of the tissue that occurs over time.
The FDA has asked companies to investigate how new 
drugs affect the human cardiac ether-à-go-go-related 
(hERG) gene. This gene produces a potassium ion channel 
in cardiac cells. By studying this, companies can assess 
the potential heart toxicity of new drugs. Blocking the 
hERG channel early in the drug development process can 
prolong action potentials and increase heart toxicity. 
Researchers also use human-induced pluripotent stem 
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cell-derived cardiomyocytes (hiPSC-CMs) to model 
various cardiovascular diseases (CVDs) like hypertrophic 
cardiomyopathy, dilated cardiomyopathy, long QT 
syndrome, and left ventricular non-compaction (Kilic, 
2020).
Furthermore, more precise in-vivo predictions could 
lead to safer and more successful treatments for CVD 
patients if in-vitro and in-silico models of the disease are 
integrated and take into consideration an individual’s 
DNA, environment, and lifestyle choices. The usage of 
animal models in preclinical research may change as a 
result of the new paradigm in drug development. They 
also add to our understanding of diseases by offering fresh 
perspectives on the underlying biology. To stop the threat 
posed by a freshly discovered medicine, for instance, the 
regulatory decision-making paradigm has been altered by 
the software for anticipating ADMET quality. 

Concept of Artificial Intelligence and Machine 
Learning 
The areas of healthcare have experienced tremendous 
change as a result of technological advancements. The 
management of information systems in the healthcare 
sector is connected to specific issues and advancements. In 
the medical industry, two technologies that are frequently 
used are big data and business intelligence. Medical 
intelligence tools and apps include big data and business 
intelligence, which are employed to practically diagnose 
and analyze medical issues (Kwon et al., 2020).
Decision support systems are employed in the healthcare 
industry as well, and they are used to make data-driven 
decisions. Information is typically handled by data 
warehouses since handling and processing data is crucial. 
Data about healthcare systems are usually multifaceted 
and often analyzed from multiple perspectives for best 
use. In the healthcare sector, digital dashboards are used 
in conjunction with methodologies and technologies for 
data visualization (Libby et al., 2011).
The field of artificial intelligence (AI) is undergoing rapid 
growth. The development of AI tools and applications 
should be guided by the requirements and clinical 
challenges. It’s important to use the technology in a 
manner that improves clinical procedures, considering 
the impact of diseases and medical issues on technology 
development. Extensive research has been conducted on 
the application of AI in healthcare. According to reports, AI 
is currently being employed to cure a variety of diseases. 
Heart disease and cancer are two examples of these 
illnesses (Manzoor, 2016). 
There are several examples of AI being used in the 
healthcare sector. Machine learning (ML) in the medical 
sciences is the first; it looks at structured data. These 
could include genetic information, medical records, 
and the like. Data warehouses are employed to make 
integration between different kinds of databases easier. 

Business intelligence is a major factor in the importance 
of operational databases, which are further classified into 
many categories for healthcare systems and companies. 
Systems using artificial intelligence (AI) have used in 
oncology and can aid in cancer diagnosis. 
Individuals who are quadriplegic might benefit from 
this. In upper-limb prosthetics, artificial intelligence (AI) 
can be utilized to monitor and regulate the spinal motor 
neurons. Cardiology is one area that stands to benefit 
from the application and use of AI technologies. Artificial 
Intelligence utilizing cardiac imaging can identify cardiac 
illnesses and conditions. Cardiac MRI image analysis can 
be used to identify certain medical conditions. In the 
medical field, accurate diagnosis and treatment are crucial. 
Patients with severe illnesses might not make it through 
a postponed diagnosis. It is therefore essential that the 
diagnosis be finished as quickly as feasible (Narula, 2019).
The use of machine learning techniques may be 
advantageous for stroke victims. Strokes can be identified 
using a well-defined process that begins with the 
monitoring of human activity and progresses to the 
detection of stroke onset. Patients are able to monitor 
their own movements (as shown in fig. 1), and any changes 
from the usual could be an indication or reminder of an 
impending stroke. Wearable Internet of Things devices 
can potentially be used to collect patient data. These data, 
along with their analysis, can be used to forecast strokes. 
During the process of acquiring and modeling data, a 
Markov model might be useful. Modeling can also be done 
with support vector machines (Roth et al., 2017).

Diagnosis & Imaging in CVD
A branch of computer science called artificial intelligence 
(AI) is a new technical science that imitates and expands 
human intelligence to tackle challenging issues. Because 

Figure 1: Benefits of AI in healthcare
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AI processes data in a way that is comparable to 
the human brain, it is extremely important in the 
medical field. Large amounts of healthcare data, such 
as prescription medication information, ultrasound 
pictures, medical records, and experimental results, can 
be recognized, processed, integrated, and analyzed by 
it. For example, AI-processed echocardiograms (ECGs) 
are currently utilized to identify heart failure, atrial 
fibrillation, anemia, hypertrophic cardiomyopathy, and 
pulmonary hypertension. Clinicians can apply the results 
of specialized algorithms to existing huge data to improve 
diagnosis (Savoji et al., 2019).
AI is based on machine learning, which does not require 
human encoding to find minute patterns in a batch of data. 
Consequently, these nuanced findings may completely 
alter the course of human diseases in terms of prognosis, 
diagnosis, recovery, and prediction. In general, artificial 
intelligence’s machine learning field is more popular. 
Depending on whether external supervision was given 
during training, it can be categorized as reinforcement 
learning, unsupervised learning, or supervised learning 
(Schneider, 2010).
Lowering the rate at which the illnesses evolve to more 
severe forms and improving overall outcomes are 
dependent on early detection, diagnosis, and treatment 
of CVDs. When it comes to identifying certain CVDs, 
like ventricular failure, aortic stenosis, and dilated 
cardiomyopathy, electrocardiogram (ECG) and cardiac 
magnetic resonance imaging (CMR) are frequently the 
gold standards. However, asymptomatic people do not 
undergo these additional instruments; rather, patients 
who are suspected of having related symptoms do. Early 
diagnosis of CVDs is made more difficult by the additional 
techniques’ limited efficacy and unsuitability as screening 
tools for the general public due to their high cost and 
technical skill requirements. Because of this, many 
patients often wait until a late stage for a diagnosis, with 
worse outcomes seen in more advanced illnesses (Wang 
& Khalil, 2018).
ECG is an often-used supplementary test that is generally 
straightforward to use, inexpensive, and accessible, even 
in resource-poor environments. For a long time, ECG has 
been a highly effective diagnostic tool for heart conditions. 
However, how a clinician interprets the ECG depends on 
their level of training and experience. Moreover, one of the 
main obstacles to effectively exploiting the benefits of the 
raw ECG waveform is the tens of thousands of data points 
that make it difficult for clinicians to understand. But 
thanks to its strong processing power, aptitude for graphic 
analysis, and learning ability, AI can also extract valuable 
and subtle information from ECG waveforms that humans 
cannot see, such as the relationship between specific CVDs 
and ECG features (World Health Organization, 2011).
Many valvular heart disorders are characterized by 
extended periods of asymptomatic heart disease. But 

if symptoms show up, the risk of dying rises sharply. 
Good outcomes are frequently achieved with follow-up 
for asymptomatic patients and valve replacement 
for symptomatic patients. However, locating these 
asymptomatic people remains dif f icult . Although 
echocardiography is not appropriate for screening, 
it is the gold standard for verifying valvular heart 
disease diagnoses. The potential use of AI-enhanced 
Electrocardiograms (AI-ECG) as a screening tool for 
asymptomatic individuals has therefore been the subject 
of much discussion (Yan et al., 2019).
Atrial f ibrillation (AF) is often asymptomatic and 
undetectable, especially in paroxysmal AF. Patients with 
atrial fibrillation (AF) may appear to have a normal sinus 
rhythm on an ECG, which can result in underdiagnoses. 
However, changes in the heart’s structure occur with 
the onset of AF. A well-trained neural network could 
potentially spot subtle differences in normal sinus-rhythm 
ECGs to predict AF. In a study, a CNN was used to identify 
patients with AF during a normal sinus rhythm using a 
10-second, 12-lead ECG. The model was trained using 
approximately 500,000 ECGs and achieved an overall 
accuracy of 79.4% and an AUC of 0.87 for detecting AF 
from sinus-rhythm ECGs when tested. AI-based prognostic 
models have seen extensive development in cardiovascular 
medicine. Advances in applying artificial intelligence 
to standard 12-lead electrocardiograms have made it 
possible to forecast the long-term prognosis for patients 
with cardiovascular disease. building and assessing a DNN 
model using ECG voltage-time traces to predict death from 
all causes within a year (Akinyele et al., 2020).

Remote Monzitoring & Management of Patients
A new class of compact, reliable, and efficient computer 
devices known as smart wearables—also called wearable 

Figure 02: AI–aided CVD Diagnosis
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gadgets or smart wearable technology—has been made 
possible by the quick advancement of electronics, especially 
microprocessors and information and communication 
technologies. Since they enable data access anywhere, at 
any time, these devices are hailed as the next big thing in 
ubiquitous technology, following smartphones (as shown 
in fig. 2). The field of smart wearables has grown quickly 
in the last several years, and a wide range of industries 
can now benefit from its technology (Attia et al., 2019).
Smart wearables have become more and more popular as 
health solutions over the last ten years. Their popularity 
and widespread use can be attributed, among other 
things, to improvements in performance, size, style, and 
longevity. Smart wearables such as wristbands, patches, 
headbands, eyeglasses, and necklaces are used to identify, 
monitor, and treat cardiovascular disease. Wearables for 
CVD have numerous ramifications. For instance, they 
offer long-term, continuous collection of physiological or 
functional data, improving patient outcomes and accuracy 
of diagnosis. They also make it possible to gather data in 
places other than clinics or hospitals, which increases 
the ability of healthcare providers to offer longer-term 
treatment to a greater number of patients. Additionally, 
smart wearables’ continuous monitoring capabilities 
provide a more advanced understanding of each patient’s 
physiological state and current activities, which makes 
it possible to provide more individualized therapy and 
healthcare. Additionally, the devices became more 
aesthetically beautiful and less bulky, which lessened 
their intrusiveness and increased their acceptability as 
everyday wearables. Through pairing, smart wearables, 
like smartphones, can profit from the ubiquitous use of 
other gadgets (Lee et al., 2022).

Smart Wearables 
More than a thousand studies on smart wearables have 
been conducted in the last few decades. Smart wearables, 
however, are too diverse to be put into one group. 
The power, processing, and memory capacities of the 
computational devices employed in wearable electronics to 
measure complimentary signals and significant biosignals 
are constrained. Thus, the creation of thorough end-to-
end algorithms is typically the first step in applying AI 
algorithms for wearable or proximity-portable smart 
devices. In order to reduce the model size and achieve 
resource economy, model compression techniques 
must be applied to the large-scale DL algorithms. Under 
these circumstances, wearables are limited to offline 
inference. Models for constrained device implementation 
are typically compressed via low-rank approximation, 
pruning, quantization, clustering, and knowledge 
distillation (Liu et al., 2021).

Remote Patient management
Remote monitoring, or RM, is a crucial part of patient 
follow-up for patients with cardiac implanted electronic 

devices (CIEDs). RM requires the cooperation of multiple 
key components. First and foremost, the patient is at 
the center of RM, and receiving the associated clinical 
advantages depends on the patient’s compliance with 
RM. Serving the administrative, non-clinical, and clinical 
parts of the interdisciplinary team that works with RM 
is the second location, which is the remote device clinic 
(Mabo et al., 2012).
A remote telemetry tool that can be used to collect data 
for several individual patients is the home monitor. 
Additionally, it can be strategically positioned near the 
patient and enrolled at a particular site (individual-based 
RM). The personnel of the remote device clinic can obtain 
this data thanks to the RM platform. An actionable event is 
any clinical or device-related incidence that RM finds and 
for which a quick fix could improve a patient’s outcome. 
Therefore, in addition to individuals with ICDs, patients 
with pacemakers or implanted loop recorders (ILR) are 
also impacted. Observational data showed that just 6% of 
scheduled invoice follow-up visits resulted in changes to 
patient care or device reprogramming. Moreover, patients 
with continuous RM were able to reduce the time interval 
between event identification and medical action to as little 
as one day (Modarai, 2019).
RM has three main advantages in terms of event detection. 
Primarily, RM enables the early detection of device and 
lead faults, such as battery depletion or lead failure. When 
there are alerts or recalls, this is quite useful for CIEDs. 
The continuous monitoring greatly reduced the number of 
unnecessary shocks and symptomatic pacing inhibition in 
patients with lead failure. The effect of remote monitoring 
may be most noticeable soon after implantation. Data 
from the TRUST study showed quicker identification of 
actionable events requiring device reprogramming or 
lead adjustment, without increasing the occurrence of 
non-actionable events (Moglia et al., 2021).

Surgical Planning & Interventions 
The training of surgeons may change as a result of the 
application of AI in surgical education. Since task-based 
learning and simulation were introduced, surgical 
training has experienced substantial modifications. AI 
is a promising addition to this route. Even though AI has 
a lot of promise, there is a dearth of clinical applications, 
including its incorporation into official medical curricula 
(Park et al., 2016).
The training of surgeons may change as a result of the 
application of AI in surgical education. Since task-based 
learning and simulation were introduced, surgical 
training has experienced substantial modifications. AI is a 
promising addition to this route. Even though AI has a lot of 
promise, there is a dearth of clinical applications, including 
its incorporation into official medical curricula. Artificial 
intelligence (AI) is particularly helpful in simulating 
surgical procedures, which enables trainees to hone their 
skills in a safe setting and get a deeper comprehension 
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of the intricate process of surgery (Pucchio et al., 2022).
Artificial intelligence (AI) in surgical education has the 
potential to improve training effectiveness and quality, 
which will lead to better clinical outcomes. The use of AI 
in surgical training may grow in popularity as both the 
field of surgery and technology continue to progress. Since 
AI’s potential and skills keep growing, this integration is 
probably going to happen in ways that are hard to imagine 
or predict right now. Artificial intelligence (AI) in surgical 
education has great promise for transforming the surgical 
education process and enhancing the overall standard of 
surgical treatment. 

Learning Surgical Competence
Surgical competency includes a broad spectrum of 
skills. It is conventional wisdom that competency 
comprises the elements of attitudes, skills, and knowledge. 
Artificial Intelligence can significantly contribute to 
the advancement of surgical skills and other aspects of 
surgical competency. AI is well-suited for simulation-
based training, which can expedite the learning curve for 
surgical procedures. In surgical education, simulation-
based training has become essential due to its ability to 
enhance student confidence and performance. AI, utilizing 
virtual reality and other simulation technologies, can 
offer surgical residents and trainees a realistic and secure 
environment to practice and improve their technical skills 
(Puliatti et al., 2022). With the aid of simulation-based 
training, learners can hone their skills and build their 
confidence in performing treatments without having to 
worry about putting actual patients in danger.

Surgical Diagnostics and Decision-Making
Diagnostics and decision-making change along with 
healthcare, putting surgeons-in-training in novel 
situations. Artificial Intelligence has the potential 
to greatly increase surgical diagnosis accuracy and 
efficiency. In the field of artificial intelligence, machine 
learning is used to extract complicated correlations from 
independent and dependent variables. Large volumes of 
data from diverse sources, including patient histories, lab 
test results, and medical photographs, can be analyzed by 
machine learning algorithms to find trends and forecast 
the most likely diagnosis (Sana et al., 2020).
Large datasets can be used to train machine learning 
algorithms to identify patterns and trends, assisting 
clinicians in reaching more trustworthy and accurate 
diagnosis conclusions. It has been noted that certain 
algorithms, particularly in radiology, yield findings that 
are comparable to those of doctors. 

Learning Minimally Invasive Surgery
Artificial intelligence has great promise for augmenting 
the safety and efficacy of robotic and minimally invasive 
surgical procedures. Artificial intelligence (AI) can 
assist in developing advanced navigation and guidance 

systems, improving the precision and accuracy of surgical 
procedures. AI-powered image analysis technologies can 
be used to identify and monitor internal body structures 
and surgical instruments, providing real-time guidance 
to the surgeon during the procedure (Varma et al., 2016).
Additionally, these technologies can assist the surgeon 
in taking timely and appropriate action by aiding in the 
identification of unforeseen intraoperative occurrences or 
issues. The development of machine learning algorithms 
that can analyze surgical data from prior procedures and 
identify patterns and trends may also profit from AI. This 
will make it possible to use more tailored and scientifically 
validated surgical planning and execution techniques. 
Large datasets can be used to train algorithms to find 
patterns and trends, that improve surgical decision-
making accuracy and reliability. Despite the technology’s 
potential for minimally invasive surgery, there is still 
a dearth of research on the application of AI in robotic 
surgery (Winkler-Schwartz et al., 2019).

Future Perspectives & its challenges 
Healthcare practitioners use several traditional techniques 
to predict cardiovascular disease. Conventional approaches 
to predicting cardiovascular disease include clinical risk 
variables associated with age, gender, medical history, and 
family history. Furthermore, an electrocardiogram (ECG) 
can be used to identify congestive heart failure symptoms, 
while echocardiography can be utilized to visualize how 
the heart functions. ECG is especially useful for managing 
the prognosis and course of treatment for individuals with 
congestive heart failure. Other common problems with the 
heart and blood vessels, such as coronary artery disease 
(CAD), can also be diagnosed and assessed using cardiac 
catheterization.
Additionally, by eliminating noisy features from the 
datasets, feature selection approaches can lower the 
dimensionality of the datasets, improving the accuracy 
of the prediction models. One dimensionality reduction 
technique that can be used to reduce the number of 
features while keeping the majority of the variance is 
principal component analysis (PCA). AI is a fast-expanding 
discipline that affects every facet of human effort, including 
business, sports, science, and medicine. It is crucial to 
maintain perspective and focus on finding applications 
of AI that can offer novel healthcare approaches, such as 
medication therapy and cardiovascular medicine. 
Utilizing AI for data-centric applications could lead to new 
developments in cardiovascular medication therapy and 
the discovery of novel phenotypes of existing ailments. It’s 
crucial to remember that artificial intelligence (AI) only 
establishes correlations, not causes. These serve only as 
hypothesis generators for more in-depth clinical research 
projects. AI also saves therapists a great deal of time by 
reducing the time it takes to process data and providing 
real-time information. By prioritizing pertinent data, AI 
studies of insertable cardiac monitor-detected episodes, 
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for example, are linked to high classification accuracy and 
lessen the strain of medical professionals.

Conclusion 
Currently, CVD continues to be a significant global health 
issue, particularly in low- and middle-income nations. For 
the next twenty years, it will remain the primary cause of 
death. AI, particularly machine learning, has demonstrated 
significant promise in the management and treatment 
of this problematic illness. Furthermore, since artificial 
intelligence was first created to imitate human thought 
processes rather than to innovate, we firmly believe that 
in the future, AI will support clinicians rather than work 
against them. As a result, the physician needs to be aware 
of the definition of artificial intelligence and its practical 
applications. The more doctors learn about the condition; 
the more powerful AI will be in the coming years. It is 
imperative for clinicians to always be learning to better 
serve patients, and they should also avoid relying too 
heavily on AI and computers. Physicians have a wonderful 
opportunity and a duty to actively follow the continual 
advancements of AI techniques and use them as needed 
to discover appropriate supporting tools for their clinical 
operations. Customized care is becoming more accessible 
in the field of cardiovascular medicine because to the 
introduction of artificial intelligence. The practice of 
cardiology is going to change, particularly in the area of 
cardiac imaging, thus doctors must adapt. Healthcare 
is becoming a pervasive activity as a result of the new 
relationships that mHealth and telemedicine are fostering 
between patients and doctors. 
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