

Review Article

Bioprinting and Organ-on-a-Chip Models: A Revolution in Preclinical Drug Testing

Deepika Gupta¹, Neelkanth M. Pujari^{2*}, Ashutosh Kumar Yadav³, Reetu⁴

¹Maharishi School of Pharmaceutical Science, Maharishi University of Information Technology, Lucknow, U.P, 226013

²Faculty of Pharmacy, Dr. APJ Abdul Kalam Technical University, Lucknow, U.P, 226031

³Associate Professor, Institute of Pharmacy, Dr Shakuntala Misra National Rehabilitation University, Lucknow-226017

⁴Associate Professor, College of Pharmacy, Integral University, Lucknow-226026

ARTICLE INFO

Article history:

Received: 23 October, 2025

Revised: 20 November, 2025

Accepted: 28 November, 2025

Published: 30 December, 2025

Keywords:

ADME, 3D bioprinting, organ-on-a-chip, multicellular tissue etc

DOI:

10.21590/jddhs.02.04.02

ABSTRACT

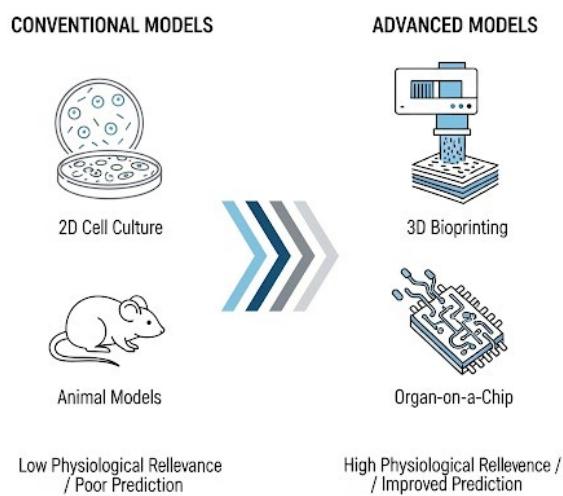
Preclinical drug development currently relies heavily on animal models and simplistic two-dimensional (2D) cell cultures, which often fail to predict human physiological responses, leading to high attrition rates in clinical trials. This review explores the transformative potential of advanced *in-vitro* models, specifically 3D bioprinting and organ-on-a-chip (OoC) technologies, to bridge the gap between bench research and clinical application. Bioprinting enables the fabrication of complex, multi-cellular tissue constructs with precise architectural control, mimicking native tissue organization. Organ-on-a-chip platforms utilize microfluidics to recapitulate the dynamic mechanical and biochemical microenvironments essential for organ function. Literature analysis reveals that these technologies significantly enhance the physiological relevance of preclinical screening for drug efficacy and toxicity. Bioprinted tumor models offer superior platforms for anticancer drug testing, while OoC systems excel in modeling pharmacokinetic profiles (ADME) and complex organ-level pathologies. The integration of patient-derived cells with these platforms further enables personalized medicine approaches. While challenges such as vascularization, scalability, and regulatory standardization persist, the convergence of bioprinting and OoC technology promises to drastically reduce reliance on animal testing, lower drug development costs, and improve clinical trial success rates.

INTRODUCTION

The pharmaceutical industry faces a significant productivity crisis, characterized by escalating research and development costs and a high rate of late-stage drug failure (Sun *et al.*, 2022). A primary contributor to this inefficiency is the poor predictive validity of traditional preclinical models. For decades, drug discovery has depended on two main pillars: 2D cell cultures and animal models. While 2D cell cultures are cost-effective and suitable for high-throughput screening, they lack the three-dimensional architecture, cell-cell interactions,

and extracellular matrix (ECM) components that define human tissue function *in vivo* (Duval *et al.*, 2017). This oversimplification often leads to misleading results regarding drug efficacy and toxicity.

Animal models, while offering systemic complexity, possess inherent limitations rooted in interspecies differences in physiology, metabolism, and genetics (Shanks *et al.*, 2009). Drugs deemed safe and effective in rodents or primates frequently fail in human trials due to unexpected toxicity or lack of efficacy, a discrepancy that costs billions annually. Furthermore, ethical considerations, guided by the 3Rs principle (Replacement, Reduction, Refinement),


***Corresponding Author:** Neelkanth M. Pujari

Address: Faculty of Pharmacy, Dr. APJ Abdul Kalam Technical University, Lucknow, U.P, 226031

Email : neelkanth.aktu@gmail.com

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2025 First Author *et al.* This is an open access article distributed under the terms of the Creative Commons Attribution- NonCommercial- ShareAlike 4.0 International License which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

Figure 1: The Evolution of Preclinical Drug Testing Models.

increasingly pressure researchers to find alternatives to animal experimentation (Tannenbaum & Bennett, 2015). Figure 1 illustrates the progression from traditional models with low physiological relevance (2D cell cultures, animal models) to advanced, human-centric models (3D Bioprinting, Organ-on-a-Chip) that offer higher predictive accuracy for clinical trials.

This paradigm shift has spurred the development of advanced *in-vitro* systems, or New Approach Methodologies (NAMs), designed to better recapitulate human physiology. Among these, 3D bioprinting and organ-on-a-chip (OoC) platforms have emerged as disruptive technologies (Skardal *et al.*, 2020). Bioprinting leverages additive manufacturing techniques to spatially pattern living cells and biomaterials, constructing tissue-like structures from the bottom up. Organ-on-a-chip systems employ microengineering to create dynamic microenvironments that simulate organ-level functions, including mechanical forces and fluid flow.

The objective of this review is to comprehensively analyze the current state of bioprinting and organ-on-a-chip technologies in preclinical drug testing. We will examine the fundamental principles, key applications in efficacy and toxicity screening, and inherent limitations of each technology. Furthermore, we explore their synergistic potential, regulatory standing, and future implications for personalized medicine and drug discovery.

BIOPRINTING IN PRECLINICAL DRUG TESTING

Fundamentals of Bioprinting

Bioprinting is an additive manufacturing process where biological materials, including living cells and biocompatible polymers (known as bioinks), are deposited layer-by-layer to fabricate 3D tissue or organ constructs (Murphy & Atala, 2014). The goal is to replicate the complex

architecture and cellular composition of native tissues, providing a more relevant environment for drug testing compared to conventional cultures.

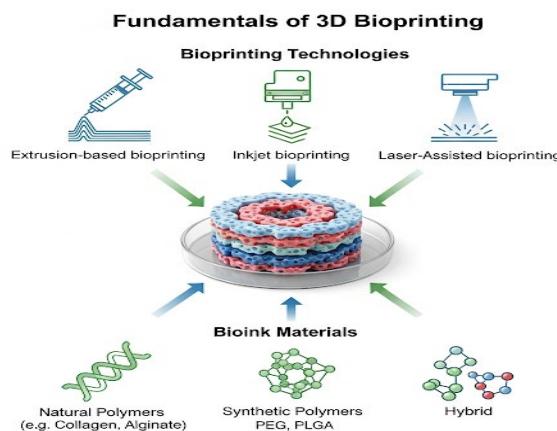
Several bioprinting techniques dominate the field, each with distinct advantages and disadvantages:

Inkjet Bioprinting

This method uses thermal or piezoelectric forces to eject picoliter-sized droplets of bioink onto a substrate. It offers high resolution and low cost but is generally limited to low-viscosity bioinks and can induce cell stress (Mandrycky *et al.*, 2016).

Extrusion-Based Bioprinting

The most common approach, extrusion bioprinting dispenses continuous filaments of high-viscosity bioink using mechanical force (e.g., pneumatic pressure or screw-based mechanisms). It supports high cell densities and allows for the creation of larger, more mechanically robust structures, although resolution is typically lower than inkjet or laser-based methods.


Laser-Assisted Bioprinting (LAB)

This technique uses a focused laser pulse to propel cell-containing material from a donor ribbon onto a receiving substrate. LAB offers high precision and cell viability, as it is a nozzle-free method, but it suffers from high complexity and cost (Guillotin *et al.*, 2010).

Figure 2 shows the main types of bioprinting technologies (Extrusion, Inkjet, and Laser-Assisted) and the common classes of bioinks used (Natural Polymers, Synthetic Polymers, and Hybrid Materials). The process results in a 3D tissue construct suitable for drug testing.

Bioinks and Materials

The success of a bioprinted construct heavily depends on the bioink, which must be printable while simultaneously providing a supportive environment for cell viability, proliferation, and differentiation (Gungor-Ozkerim *et al.*, 2018). Bioink materials are broadly categorized as:

Figure 2: Fundamentals of 3D Bioprinting

Natural Polymers

Materials like collagen, gelatin, hyaluronic acid, and alginate are widely used due to their excellent biocompatibility and inherent biological signaling motifs that mimic the natural ECM. However, they often possess poor mechanical properties and rapid degradation rates, making them difficult to print into stable, complex structures (Hölzl *et al.*, 2016).

Synthetic Polymers

Polymers such as polyethylene glycol (PEG) and polylactic-co-glycolic acid (PLGA) offer tunable mechanical strength, degradation kinetics, and printability. Their primary drawback is a lack of intrinsic biological activity, often necessitating modification with cell-adhesive peptides to promote cell attachment.

Hybrid Biomaterials

To overcome individual limitations, researchers increasingly combine natural and synthetic polymers. These hybrid bioinks leverage the biocompatibility of natural materials with the structural integrity and tunability of synthetic ones, creating optimal environments for specific tissue applications (Suntornnond *et al.*, 2017).

Applications in Drug Testing

Bioprinting allows for the creation of disease models that capture the spatial heterogeneity of tissues, which is particularly valuable in oncology and toxicity testing.

Tumor Models for Anticancer Drug Screening

Traditional cancer research relies on 2D monolayers or animal xenografts that fail to capture the complexity of the human tumor microenvironment (TME). Bioprinted tumor models can incorporate multiple cell types (cancer cells, fibroblasts, endothelial cells) in a specific 3D arrangement, recreating TME characteristics like hypoxia gradients and ECM stiffness (Knowlton *et al.*, 2015). These models have demonstrated more realistic drug resistance profiles compared to 2D cultures, allowing for more accurate screening of novel therapeutics.

Bioprinted Tissues for Toxicity Testing

The liver and heart are primary sites for drug-induced toxicity. Bioprinted liver models, containing primary hepatocytes, stellate cells, and endothelial cells, can replicate complex liver functions like metabolic activity and fibrosis progression, offering superior prediction of drug-induced liver injury (DILI) (Ma *et al.*, 2018). Similarly, bioprinted cardiac tissues can model contractile function and electrophysiology, enabling the assessment of cardiotoxicity by measuring beat rate irregularities upon drug exposure (Zhang *et al.*, 2017).

Personalized Drug Testing

The ultimate goal is to use patient-derived cells (e.g., induced pluripotent stem cells, iPSCs, or biopsied cancer cells) to print patient-specific tissue models. This approach

allows for testing a panel of drugs on an individual's unique biological background, predicting drug response before treatment initiation and paving the way for true precision medicine (Sachs *et al.*, 2018).

Limitations and Challenges

Despite rapid progress, significant hurdles remain for the routine use of bioprinted tissues in drug screening:

Vascularization

Creating functional vascular networks capable of perfusing thick tissue constructs (>500μm) remains the most critical challenge (Kolesky *et al.*, 2016). Without efficient nutrient delivery and waste removal, cells in the core of large constructs suffer from necrosis, limiting long-term viability and complexity.

Tissue Maturation and Viability

Bioprinted cells require time to mature and achieve full functionality *in-vitro*. Maintaining this functionality over weeks or months for chronic toxicity studies is difficult, requiring complex bioreactors and highly optimized culture media.

Standardization and Scalability

For adoption in high-throughput screening (HTS), bioprinting processes must be standardized across laboratories. Variability in printers, bioinks, and cell handling protocols currently hinders reproducibility. Furthermore, scaling production from single constructs to multi-well plate formats remains a technical challenge (Gjorevski *et al.*, 2016).

ORGAN-ON-A-CHIP MODELS

Concept and Working Principle

Organ-on-a-chip (OoC) systems are microfluidic cell culture devices designed to emulate the key functional units of human organs. Unlike static 3D cultures, OoC platforms introduce continuous perfusion and physical forces that mimic the dynamic *in vivo* microenvironment (Bhatia & Ingber, 2014). A typical OoC device consists of microchannels lined with living human cells. The constant flow of culture medium simulates blood flow, providing nutrients and removing waste while applying physiologically relevant shear stress.

Crucially, OoCs can integrate mechanical actuation to simulate processes like breathing in the lungs or peristalsis in the gut (Huh *et al.*, 2010). By recreating both the physical structure and dynamic forces, OoCs promote higher levels of cell differentiation and tissue-specific function compared to static models.

Types of Organ-on-a-Chip Models

Researchers have successfully developed various single-organ models and integrated multi-organ systems

Lung-on-a-Chip

A pioneering model that features two parallel microchannels separated by a porous membrane lined with alveolar epithelial cells on one side and endothelial cells on the other. Applying vacuum to side chambers cyclically stretches the membrane, mimicking breathing mechanics. This model has been used to study lung inflammation, infection, and drug response to airborne particles (Huh *et al.*, 2010).

Liver-on-a-Chip

These models focus on replicating the metabolic function of the liver sinusoid. By co-culturing hepatocytes with other liver cell types under continuous perfusion, these chips can maintain stable metabolic activity for several weeks, enabling accurate assessment of DILI and drug metabolism (Beckwitt *et al.*, 2018).

Gut-on-a-Chip

Simulates the intestinal environment by culturing intestinal epithelial cells on a membrane under perfusion and peristaltic motion. These models are particularly useful for studying drug absorption and microbiome interactions (Kim *et al.*, 2012).

Multi-organ Systems (Body-on-a-Chip)

The most advanced iterations link multiple single-organ chips together (e.g., liver, kidney, gut, and lung). These systems allow researchers to study ADME (Absorption, Distribution, Metabolism, Excretion) profiles of drug candidates in a single, integrated human-relevant system, providing insights into organ interactions and systemic toxicity (Herland *et al.*, 2020).

Applications in Drug Testing

OoCs offer precise control over experimental conditions, making them ideal for pharmacokinetic and toxicodynamic studies.

ADME Studies

Multi-organ chips allow for the quantification of a drug's absorption in a gut chip, its metabolism in a connected liver chip, and its excretion through a kidney chip. This systemic approach provides data on bioavailability and clearance rates that were previously only obtainable from animal models (Maschmeyer *et al.*, 2015).

Toxicity Assessment

OoCs excel at modeling organ-specific toxicity mechanisms. For example, kidney-on-a-chip models can simulate fluid shear stress in the proximal tubule, allowing researchers to investigate nephrotoxicity mechanisms that are not apparent in static cultures (Jang *et al.*, 2013).

Modeling Rare and Complex Diseases

OoCs provide a platform for studying diseases where animal models are inadequate. By using patient-derived

cells, researchers can model complex genetic disorders (e.g., cystic fibrosis) or inflammatory conditions (e.g., Crohn's disease), providing a powerful tool for screening targeted therapies (Srinivasan *et al.*, 2021).

Limitations and Challenges

The sophistication of OoC technology also presents several challenges for widespread adoption:

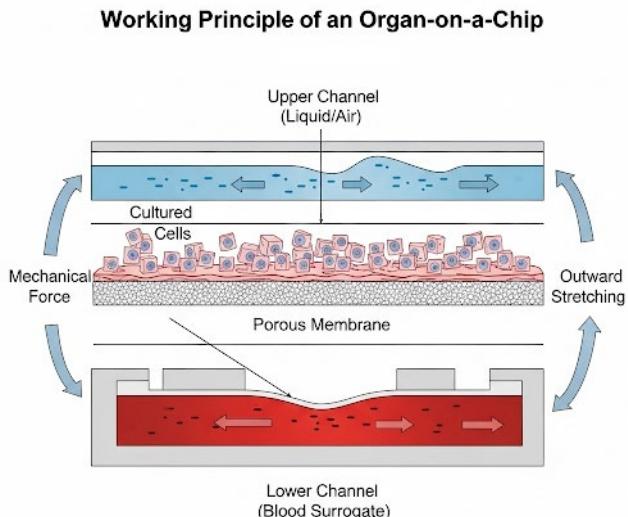
Complex Fabrication and Operation

The fabrication of microfluidic devices often requires specialized cleanroom facilities and expertise in soft lithography. Operating these systems demands precise fluid control and can be labor-intensive, limiting throughput.

Material Limitations

Most OoC devices are fabricated from polydimethylsiloxane (PDMS), a polymer favored for its optical transparency and biocompatibility. However, PDMS can absorb small hydrophobic molecules, including many drug candidates, potentially confounding experimental results by reducing the effective drug concentration (van Meer *et al.*, 2017).

Validation and Reproducibility


Before regulatory acceptance, OoC models must be rigorously validated against existing preclinical data and human clinical outcomes. Ensuring reproducibility across different research groups, each using slightly different chip designs and protocols, remains a significant hurdle (Marx *et al.*, 2020).

COMPARATIVE INSIGHTS: BIOPRINTING VS. ORGAN-ON-A-CHIP

Bioprinting and organ-on-a-chip technologies offer distinct yet complementary solutions to the challenges of preclinical testing. Understanding their respective strengths and weaknesses clarifies their ideal roles in the drug development pipeline.

Bioprinting strengths lie in architectural complexity. The precise, bottom-up placement of multiple cell types and ECM components allows for unmatched replication of native tissue histology and spatial relationships. This is crucial for studying phenomena heavily dependent on tissue structure, such as tumor invasion or tissue fibrosis. Organ-on-a-chip strengths lie in physiological simulation. The integration of microfluidics and mechanical forces recapitulates the dynamic environment that governs organ function. This is critical for ADME studies and modeling mechanobiological pathways that are absent in static cultures (Figure 3).

However, the distinction between these technologies is blurring, and their synergistic potential represents the next frontier (Figure 4). The most advanced models integrate bioprinted tissues directly within microfluidic OoC platforms. For example, bioprinting can be used to

Figure 3: Working Principle of an Organ-on-a-Chip.

create a highly organized liver lobule structure, which is then incorporated into an OoC device to provide perfusion and simulate blood flow (Lee *et al.*, 2017). This “bioprinted OoC” approach combines the best of both worlds: high-fidelity anatomical structure and physiologically relevant dynamic stimuli. Table 1 summarizes the comparison of Bioprinting and Organ-on-a-Chip for Preclinical Applications to understand the synergistic potential briefly.

REGULATORY AND ETHICAL PERSPECTIVES

The transition from traditional models to advanced *in-vitro* models faces regulatory scrutiny. Agencies like the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) acknowledge the potential of these technologies to improve drug safety predictions. The recent passage of the FDA Modernization Act 2.0 (2022) in the United States marked a pivotal moment. This legislation explicitly authorizes drug sponsors to use data

from alternative methods, including OoCs and bioprinted models, in lieu of animal testing data for Investigational New Drug (IND) applications (FDA, 2022).

Despite this legislative progress, challenges in regulatory acceptance remain. The key barrier is the lack of standardized validation protocols. For a model to be qualified for regulatory decision-making, it must demonstrate reliability, reproducibility, and predictive power superior to or equivalent to current standards (Marx *et al.*, 2020). International consortiums are working to establish benchmark compounds and performance criteria to facilitate this validation process.

From an ethical standpoint, bioprinting and OoCs offer a clear path toward fulfilling the 3Rs mandate. By providing human-relevant data without animal suffering, these technologies address profound ethical concerns associated with preclinical research. The ability to reduce or eventually replace animal testing is a primary driver for investment and adoption by both industry and regulatory bodies.

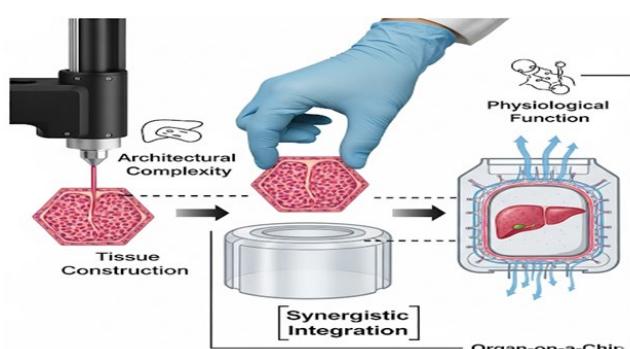
Future Directions and Innovations

The future of advanced preclinical models lies in integration and automation. Several key trends are shaping the next generation of bioprinting and OoC systems:

Integration with Artificial Intelligence (AI) and Machine Learning (ML)

Bioprinted tissues and OoC platforms generate vast amounts of complex, multidimensional data (e.g., real-time imaging, proteomic profiles). AI and ML algorithms are essential for interpreting this data, identifying complex toxicity signatures, and building predictive models of drug response (Rifai *et al.*, 2023). AI can also optimize bioprinting design parameters and microfluidic flow patterns for better tissue maturation.

Advanced Multi-Organ Systems


Future research will focus on expanding body-on-a-chip systems to include more organ representations (e.g., integrating immune system components, brain barriers, and reproductive organs). These complex models will allow for unprecedented insight into systemic disease and off-target drug effects.

Biosensor Integration and Real-Time Monitoring

Incorporating non-invasive biosensors directly into bioprinted constructs or OoC channels will enable continuous monitoring of tissue health parameters like oxygen levels, pH, glucose consumption, and lactate production. This real-time data provides immediate feedback on drug toxicity and metabolic activity (Zhang *et al.*, 2021).

Personalized Medicine Hubs

The vision extends to creating automated platforms where

Figure 4: Synergistic Integration of Bioprinting and Organ-on-a-Chip.

Table 1: Comparison of Bioprinting and Organ-on-a-Chip for Preclinical Applications

Feature	3D Bioprinting	Organ-on-a-Chip (OoC)
Core Principle	Additive manufacturing; precise deposition of cells and biomaterials layer-by-layer.	Microfluidic systems; dynamic culture with mechanical and biochemical stimuli.
Key Advantage	High architectural control; replication of complex tissue structure and cell composition.	Simulation of physiological microenvironment; mechanical forces and fluid flow.
Primary Application	Tissue-level toxicity; complex disease modeling (e.g., tumor microenvironment).	Systemic ADME/PK studies; modeling mechanobiology and organ function.
Main Limitation	Vascularization of thick constructs; long-term tissue maturation; lower throughput.	Material absorption issues (PDMS); fabrication complexity; throughput limitations.
Throughput	Low to medium; improving with array-based printing techniques.	Low to medium; multiplexing multiple chips increases throughput but adds complexity.
Synergistic Example	Bioprinting complex tissue structures directly into the chambers of an OoC device.	

patient iPSCs can be rapidly differentiated, bioprinted into specific tissue models, and screened against multiple therapies within days. This would revolutionize clinical decision-making, especially in critical care settings like oncology.

CONCLUSION

Bioprinting and organ-on-a-chip technologies represent a fundamental shift in preclinical drug development. They move beyond the limitations of oversimplified 2D cultures and ethically problematic animal models by offering unprecedented levels of physiological relevance and human specificity. Bioprinting provides the structural foundation by building tissues with anatomical precision, while organ-on-a-chip platforms provide the functional context by simulating dynamic microenvironments.

While challenges related to vascularization, scalability, cost, and regulatory standardization must be overcome, the momentum in the field is undeniable. The synergistic combination of these technologies, enhanced by AI data analysis and personalized cell sourcing, holds the potential to significantly de-risk drug candidates before they reach human trials. By providing faster, cheaper, and more accurate predictions of human response, bioprinting and OoCs are poised to not only complement but increasingly replace animal testing, heralding a new era of efficient and ethical pharmaceutical innovation.

REFERENCES

- Beckwitt, E. C., Zhang, Y., & Wells, A. (2018). Liver-on-a-chip: The future of *in-vitro* drug metabolism and toxicity models. *Advanced Drug Delivery Reviews*, 129, 88–104. DOI: 10.1016/j.addr.2018.05.004
- Bhatia, S. N., & Ingber, D. E. (2014). Microfluidic organs-on-chips. *Nature Biotechnology*, 32(8), 760–772. DOI: 10.1038/nbt.2989
- Duval, K., Grover, H., Han, L. H., Mou, Y., & Pegoraro, A. F. (2017). Modeling physiological events in 2D vs. 3D cell culture. *Physiology*, 32(4), 266–277. DOI: 10.1152/physiol.00036.2016
- FDA. (2022). *FDA Modernization Act 2.0*. Public Law No. 117-328, Division FF, Section 3209.
- Gjorevski, N., Sachs, N., Manfrin, A., Giger, S., Bragina, M. E., & Lutolf, M. P. (2016). Designer matrices for intestinal stem cell and organoid culture. *Nature*, 539(7630), 560–564. DOI: 10.1038/nature20168
- Guillotin, B., Souquet, A., Catros, S., Duocastella, M., & Fabre, B. (2010). Laser assisted bioprinting of engineered tissues. *Trends in Biotechnology*, 28(4), 181–189. DOI: 10.1016/j.tibtech.2010.01.003
- Gungor-Ozkerim, P. S., Inci, I., Zhang, Y. S., Khademhosseini, A., & Dokmeci, M. R. (2018). Bioinks for 3D bioprinting: an overview. *Biomaterials Science*, 6(5), 915–946. DOI: 10.1039/c7bm00765e
- Herland, A., Maoz, B. M., Das, D., Somayaji, M. R., Prantil-Baun, R., & Ingber, D. E. (2020). Quantitative prediction of human drug-drug interactions from key-organ-chip system. *Nature Communications*, 11(1), 3241. DOI: 10.1038/s41467-020-17088-6
- Hölzl, K., Lin, S., Tytgat, L., Van Vlierberghe, S., Gu, L., & Ovsianikov, A. (2016). Bioink properties before, during and after 3D bioprinting. *Biofabrication*, 8(3), 032002. DOI: 10.1088/1758-5090/8/3/032002
- Huh, D., Matthews, B. D., Mammoto, A., Montoya-Zavala, M., Hsin, H. Y., & Ingber, D. E. (2010). Reconstituting organ-level lung functions on a chip. *Science*, 328(5986), 1662–1668. DOI: 10.1126/science.1188302
- Jang, K. J., Mehr, A. P., Hamilton, G. A., & Ingber, D. E. (2013). Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. *Integrative Biology*, 5(9), 1119–1129. DOI: 10.1039/c3ib40049b
- Kim, H. J., Huh, D., Hamilton, G., & Ingber, D. E. (2012). Human gut-on-a-chip inhabited by microbial flora that experiences peristalsis-like motions and flow. *Lab on a Chip*, 12(12), 2165–2174. DOI: 10.1039/c2lc40074j
- Knowlton, S., Onal, S., Yu, C. H., Zhao, J. J., & Tasoglu, S. (2015). Bioprinting for cancer research. *Trends in Biotechnology*, 33(9), 504–513. DOI: 10.1016/j.tibtech.2015.06.007
- Kolesky, D. B., Truby, R. L., Gladman, A. S., Busbee, T. A., Homan, K. A., & Lewis, J. A. (2016). 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. *Advanced Materials*, 28(15), 3026–3033. DOI: 10.1002/adma.201505326
- Lee, H., Cho, D. W., & Kim, J. Y. (2017). Bioprinting of a functional vascularized liver model for drug screening applications. *Biofabrication*, 9(2), 025007. DOI: 10.1088/1758-5090/aa6b9a
- Ma, X., Qu, X., Zhu, W., Li, Y. S., Yuan, S., & Zhang, H. (2018). Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. *Proceedings of the National Academy of Sciences*, 115(10), 2206–2211. DOI: 10.1073/pnas.1712219115
- Mandrycky, C., Wang, Z., Kim, K., & Kim, D. H. (2016). 3D bioprinting for engineering complex tissues. *Biotechnology Advances*, 34(4), 422–434. DOI: 10.1016/j.biotechadv.2015.12.011
- Marx, U., Akabane, T., Andersson, T. B., Baker, E., Beilmann, M., & Beken, S. (2020). Biology-inspired microphysiological systems to advance new approach methodologies for regulatory use. *Altex*, 37(3), 365–391. DOI: 10.14573/altex.2001241

19. Maschmeyer, I., Lorenz, A. K., Schimek, K., Hasenberg, T., Ramme, A. P., & Hubner, J. (2015). A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney. *Lab on a Chip*, 15(12), 2688–2699. DOI: 10.1039/c5lc00392j
20. Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. *Nature Biotechnology*, 32(8), 773–785. DOI: 10.1038/nbt.2958
21. Rifai, K., Thomas, M., & Shvartsman, M. (2023). Machine learning for predictive toxicology in organ-on-a-chip systems. *Trends in Pharmacological Sciences*, 44(5), 291-303. DOI: 10.1016/j.tips.2023.03.001
22. Sachs, N., Papaspyropoulos, A., Zomer, A., Kujala, P., & Clevers, H. (2018). Long-term culture of patient-derived organoids from multiple cancers. *Cell*, 172(1-2), 373-382.e10. DOI: 10.1016/j.cell.2017.11.048
23. Shanks, N., Greek, R., & Greek, J. (2009). Are animal models predictive for humans? *Philosophy, Ethics, and Humanities in Medicine*, 4(2). DOI: 10.1186/1747-5341-4-2
24. Skardal, A., Shupe, T., & Atala, A. (2020). Organ-on-a-chip and bioprinting technologies for a new dimension in drug screening. *Nature Reviews Drug Discovery*, 19(6), 391–411. DOI: 10.1038/s41573-020-0067-1
25. Srinivasan, B., Kolli, A. R., Esch, M. B., Abaci, H. E., Shuler, M. L., & Hickman, J. J. (2021). TEER measurement and its correlation with tight junction proteins in a gut-on-a-chip model. *Journal of Pharmacological and Toxicological Methods*, 108, 106950. DOI: 10.1016/j.vascn.2021.106950
26. Sun, D., Gao, W., Hu, H., & Zhou, S. (2022). Why 90% of clinical drug development fails and how to improve it? *Acta Pharmaceutica Sinica B*, 12(7), 3049–3062. DOI: 10.1016/j.apsb.2022.02.003
27. Suntornnond, R., An, J., & Chua, C. K. (2017). Roles of hybrid bioinks in 3D bioprinting of tissues and organs. *Macromolecular Bioscience*, 17(5), 1600378. DOI: 10.1002/mabi.201600378
28. Tannenbaum, J., & Bennett, B. T. (2015). Russell and Burch's 3Rs then and now: The need for clarity in definition and purpose. *Journal of the American Association for Laboratory Animal Science*, 54(2), 120–132.
29. van Meer, B. J., de Vries, H., Firth, K. S. A., van Weerd, J., & Tertoolen, L. G. J. (2017). Small molecule absorption by PDMS in microfluidic systems. *Biophysical Reviews*, 9(1), 17–25. DOI: 10.1007/s12551-016-0247-8
30. Zhang, Y. S., Arneri, A., Bersini, S., Shin, S. R., Zhu, K., & Golimalekabadi, Z. (2017). Bioprinting of a functional heart-on-a-chip model. *Biomaterials*, 112, 48–59. DOI: 10.1016/j.biomaterials.2016.10.015
31. Zhang, Y., Aleman, J., Shin, S. R., Kilic, T., Kim, D., & Khademhosseini, A. (2021). Integration of real-time biosensors into organ-on-a-chip systems. *Advanced Functional Materials*, 31(18), 2008218. DOI: 10.1002/adfm.202008218

HOW TO CITE THIS ARTICLE: Gupta, D., Pujari, N.M., Reetu, Y. Bioprinting and Organ-on-a-Chip Models: A Revolution in Preclinical Drug Testing. *J. of Drug Disc. and Health Sci.* 2025;2(4):7-13. **DOI:** 10.21590/jddhs.02.04.02